EC Dental Science

Mini Review Volume 22 Issue 4 - 2023

Introduction to Flexible Bioelectronics: Applications, Challenges and Perspective

Ziyad S Haidar1-5*

1BioMAT’X (HAiDAR I+D+i LAB), Santiago, Chile
2Clínica Universidad de los Andes Hospital, Santiago, Chile
3Facultad de Odontología/Faculty of Dentistry, Universidad de los Andes, Santiago, Chile
4Programa de Doctorado en BioMedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
5Centro de Investigación e Innovación Biomédica (CiiB), Facultad de Medicina, Universidad de los Andes, Santiago, Chile

*Corresponding Author: Ziyad S Haidar. DDS, Implantologist (Cert Implantol), Oral and Maxillofacial Surgeon (MSc OMFS), FRSC (CDN), FICD, FICS, MBA, PhD. Professor and Scientific Director, Faculty of Dentistry, Universidad de los Andes, Santiago de Chile. Founder and Head/Director of BioMAT’X (HAiDAR I+D+i) R&D&I Research Group and Laboratory, (Laboratorio de Biomateriales, Farmacéuticos y Bioingeniería de Tejidos Cráneo Máxilo-Facial), Biomedical Research and Innovation Center/Centro de Investigación e Innovación Biomédica (CiiB), Faculty of Medicine, Department for Research, Development and Innovation, Universidad de los Andes, Avenida Mons, Las Condes, Santiago de Chile, Chile.
Received: March 08, 2023; Published: March 12, 2023

In brief, flexible bioelectronics is an emerging field that combines the principles of biology and electronics to create flexible and stretchable electronic devices that can interface with biological systems. This field has gained significant attention in recent years due to its potential applications in a range of fields, including healthcare, biomedicine, bioengineering, surgery, and cancer research. This introductory piece provides a simplified overview of the current state of R&D&I in flexible bioelectronics, with a focus on its key concepts, applications, challenges, and perspective. With the lay reader in mind, the article aims to highlight the exciting potential of this cutting-edge biotechnology.

Keywords: Flexible Bioelectronics; Cranio-Maxillofacial Surgery; 3D Printing; Regenerative Dentistry; Implantable/Wearable Sensors; Biosensing; Real-Time Monitoring; Bone Healing

  1. Kim DH., et al. “Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy”. Nature Materials4 (2012): 316-323.
  2. Liang X., et al. “Wearable and flexible electronics for continuous molecular monitoring”. Chemical Society Reviews15 (2018): 5866-5887.
  3. Lipomi DJ., et al. “Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes”. Nature Nanotechnology12 (2011): 788-792.
  4. Piret G and Bao Z. “Soft Electronic Interfaces for In Vivo Neural Recording”. Advanced Healthcare Materials5 (2021): 2001303.
  5. Son D., et al. “Multifunctional wearable devices for diagnosis and therapy of movement disorders”. Nature Nanotechnology5 (2014): 397-404.
  6. Kim Y and Lee S. “Recent advances in flexible and stretchable bio-electronics: materials, devices, and applications”. Advanced Materials42 (2019): 1903634.
  7. Hou X., et al. “Recent Progress on Flexible Electronics for Wearable Sensors and Devices”. Journal of Materials Chemistry C38 (2020): 13207-13225.
  8. Huang X., et al. “Stretchable and flexible electronic devices using two-dimensional materials”. Nano Today 24 (2019): 91-109.
  9. Xu L., et al. “3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium”. Nature Communications1 (2014): 1-11.
  10. Chen Y., et al. “Bioinspired and Biomimetic Nanomedicines”. Accounts of Chemical Research5 (2019): 1255-1264.
  11. Mannoor MS., et al. “Flexible sensors for disease monitoring in the oral cavity”. Advanced Healthcare Materials6 (2016): 711-721.
  12. Lee H., et al. “A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy”. Nature Nanotechnology6 (2016): 566-572.
  13. Mannoor MS., et al. “3D printed bionic ears”. Nano Letters6 (2013): 2634-2639.
  14. Popat KC., et al. “Elastomeric free-standing polyimide thin films for microsystem applications: fabrication and characterization”. Journal of Microelectromechanical Systems6 (2006): 1620-1628.
  15. Choi J., et al. “Electronic skin: recent progress in flexible sensors for wearable and implantable devices”. Advanced Materials27 (2020): 2001975.
  16. Kim DH., et al. “Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy”. Proceedings of the National Academy of Sciences49 (2012): 19910-19915.
  17. Li Y., et al. “Electroactive hydrogel dressings for wound healing”. Acta Biomaterialia 111 (2020): 1-19.
  18. Ladd C., et al. “3D printing of free standing liquid metal microstructures”. Advanced Materials36 (2013): 5081-5085.
  19. Tyler DJ. “Neural interfaces for somatosensory feedback: bringing life to a prosthesis”. Current Opinion in Neurology6 (2015): 574-581.
  20. Gao L., et al. “Flexible and wearable sensors for personalized cancer detection and diagnosis”. Advanced Materials45 (2019): e1904339.
  21. Chen C., et al. “Wireless intraoral tongue-controlled system for people with tetraplegia: A feasibility study”. IEEE Transactions on Biomedical Engineering5 (2020): 1309-1318.
  22. Kim J., et al. “Real-time detection of dental implant loosening using a flexible force sensor”. Scientific Reports1 (2019): 1-10.
  23. Cao L., et al. “Smart orthodontic aligners with built-in force sensors for improved treatment monitoring”. Sensors and Actuators A: Physical 326 (2021): 112790.
  24. Kim J., et al. “Wireless, intraoral hybrid electronics for real-time quantification of sodium intake toward hypertension management”. Proceedings of the National Academy of Sciences38 (2019): 18888-18892.
  25. Li T., et al. “Flexible and implantable sensor for in vivo measurement of bone strain”. Biosensors and Bioelectronics 107 (2018): 110-116.

Ziyad S Haidar. “Introduction to Flexible Bioelectronics: Applications, Challenges and Perspective”.”. EC Dental Science 22.4 (2023): 61-67.